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Eigenstate structure in graphs and disordered lattices
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We study wave function structure for quantum graphs in the chaotic and disordered regime, using measures
such as the wave function intensity distribution and the inverse participation ratio. The result is much less
ergodicity than expected from random matrix theory, even though the spectral statistics are in agreement with
random matrix predictions. Instead, analytical calculations based on short-time semiclassical behavior correctly
describe the eigenstate structure.
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Quantum graphs, known also as network models, h
been used successfully for many years as simple dynam
systems in which to study complex wave behavior. For
propriate parameter values, graphs can be made to dis
generic chaotic, disordered, or integrable motion, and at
same time the quantum mechanics of these systems ha
simplifying advantage of being semiclassically exact. Ori
nally, graphs were developed as simple models for electro
motion between the atoms of an organic molecule; late
was realized that very similar methods were also applica
to the study of crystalline materials. Seminal work in th
field was performed by Pauling as early as 1936@1#, with
important later contributions by Coulson@2#, by Montroll,
who was able to interpolate between free-electron mo
and tight-binding models@3#, and by Richardson and Balaz
who found a class of networks for which constant ene
surfaces were determined entirely by the network topolo
@4#.

The picture developed by these authors is that electr
travel from atom to atom along strictly one-dimension
bonds or pathways~possibly under the influence of a on
dimensional potential!, and scatter into other bonds whe
ever they reach an atomic vertex. Therefore, a key appr
mation involved in all the graph models is that the poten
confining traveling particles to the bonds is strong enough
make excitation of higher-energy transverse modes ne
gible; similarly the vertices are assumed to behave in a
fectly zero-dimensional manner at relevant energy sca
Apart from this important constraint, one has substan
freedom in choosing the graph topology, the potentials~and
possibly also magnetic fields! governing one-dimensiona
motion along the bonds, and also to some degree the sca
ing matrix at each vertex, as we will see below.

In the 1980s important progress was made among ot
by Alexander@5#, who used networks to study the behavi
of disordered superconductors. Most recently, graph mo
have been used by a number of authors to study issue
diverse as Anderson localization within the context of pe
odic orbit theory@6#, the spatial distribution and transpo
properties of persistent currents@7#, Aharonov-Bohm con-
ductance modulations in GaAs/GaxAl12xAs networks @8#,
spectral statistics and the trace formula in chaotic syst
@9#, spectral determinants, with applications to thermo
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namic and transport properties of mesoscopic networks@10#,
and chaotic scattering and resonance behavior@11#. Parallel-
ing this progress of the past several years has been rigo
work on the mathematical structure of graphs, especially
of Carlson, who has studied differential operators on gra
and graph spectral theory@12#. A discussion of the earlier
history of quantum graphs can be found in the paper of K
tos and Smilansky@13#, which also provides an extensiv
review of the model.

Though substantial work now exists on the spectral a
scattering properties of quantum graphs, and also on t
large-scale localization behavior, surprisingly little attenti
has been paid so far to the detailed wave function struc
of this paradigmatic quantum system. In this paper we be
to address questions relating to the statistics of wave fu
tions on graphs and their relation to the underlying class
structures in the system. In the process, we examine the
lationship between short-time and long-time effects on s
tionary behavior, making connections to recent work
other simple quantum chaotic problems, including quant
maps, Sinai billiards, Bunimovich stadia, tunneling in doub
wells, conductance through chaotic quantum dots, and ma
body systems with random two-body interactions@14#.

Following the discussion of Ref.@13#, a quantum graph
consists ofV vertices connected byB bonds, each of which is
modeled as a one-dimensional wire of lengthL j ( j
51, . . . ,B) along which the wave propagates freely wi
zero potential. At each of thei 51, . . . ,V vertices,v i>2
bonds will meet~note that( i 51

V v i52B), and one must im-
pose wave function continuity

C i , j~0!5C i , j 8~0! ~1!

and a current conservation condition

(
j

S d

dx
C i , j D ~0!5l iC i , j~0!. ~2!

Note that in both of the equations above we are fixing
vertex i, while j labels the bonds, as it does throughout t
paper.C i , j (x) is the wave function in the bondj, with x
50 corresponding to the vertexi andx5L j corresponding to
the other vertex. In the continuity condition of Eq.~1!, j and
j 8 represent any two bonds meeting at vertexi, while the
sum in the current conservation condition of Eq.~2! is over
all v i bonds labeled byj that meet at this vertex. Because
©2001 The American Physical Society25-1
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continuity, j on the right-hand side of Eq.~2! can represen
any oneof the bonds meeting at the vertexi; the indexj is of
course not summed over.

l i in the current conservation condition is a free~and
possibly energy-dependent! parameter associated with th
height of the effective potential at vertexi, and allows one to
interpolate between Neumann (l i50) and Dirichlet (l i
→`) boundary conditions. Formally, using self-adjoint e
tension theory, where one starts out by defining a Ham
tonian operator on the domain of wave functions that l
away from the vertices and then classifies all consistent w
of extending this operator to the full domain while keeping
self-adjoint, one can show that the form of Eq.~2! with one
free parameterl is the only one consistent with both wav
function continuity and conservation of flux@15,16#. Of
course, we also easily see that Eqs.~1! and~2! are invariant
under all local permutation of the bonds. In this way, o
vertex scatterers are analogous to pointlike s-wave scatte
in empty space, whose strength can similarly be describe
a single effective energy-dependent parameter.

Because of time-reversal invariance, the wave function
each bond can be written asC i , j (x)5ai , j

(k)eikx1ai , j
(k)* e2 ikx

for an eigenstate at energyk2/2m. Thus, the distribution of
wave function intensities in the system can be comple
characterized in the limitkL→` by the distribution of the
quantitiesuai , j

(k)u2. In this limit, the simple normalization con
dition

(
i , j

L j uai , j
(k)u25(

j
L j ~3!

ensures that the mean bond intensity^uai , j
(k)u2& is set to unity.

We begin our analysis with a simple one-dimensio
‘‘ring graph’’ @13# where theV vertices are arranged in
circle and each vertexi is connected by bonds to neighborin
vertices i 2v/2 . . . i 21,i 11 . . . i 1v/2. v, the number of
bonds meeting at every vertex, is known as the valency~here
taken to be constant over the entire graph!. Setting all the
vertex potentialsl i50 leads to the maximum possible del
calization in the graph~the opposite limit,l i→` would in-
stead produce eigenstates localized on individual bon!,
while nonintegrability is ensured through randomness in
bond lengthsL j . In our calculation we take the bond length
to be uniformly distributed in an interval@12dL,11dL#;
because the scattering matrices depend only onkLjmod 2p,
all choices ofdL are equivalent as long asdL@k21. The
eigenstates of the system may be obtained by examinin
V3V secular matrixh(k) @13#; k is an eigenvalue wheneve
deth(k)50, and the associated null vector corresponds to
eigenvector of the graph. In fact, small but nonzero singu
valuese of h(k) can easily be seen to correspond to eig
vectors of the same system with slightly perturbed potent
l i→l i2ke, so sufficiently small singular values (ue
u,k21l) can also be used to produce eigenstates. T
method allows the collection of several independent w
functions at a given value ofk for any given realization of
the disorder ensemble. One easily checks that collecting
03622
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or more wave functions at a given value ofk has no discern-
ible effect on the resulting wave function statistics.

Comparing the Heisenberg time (\ divided by the mean
level spacing, at which individual levels are resolved! with
the time required classically to diffuse over the entire syste
or alternatively making an analogy with banded rando
matrix behavior, we see that the condition for avoiding
calization in our system isv2@V. We note that the localiza
tion condition isk and \ independent and depends only o
the classical graph geometry. Increasing the valencyv for a
fixed system sizeV, one easily observes a transition fro
localized to delocalized behavior, which can be detected
ther by looking at the change in level spacing statistics~from
Poisson to GOE! or at the change in the wave function in
tensity correlation~from strongly negative to near zero! be-
tween distant points on the graph. Either method confir
the expected scaling behavior for the transition. One
therefore take the large-volume limitV→`, where statistical
behavior is expected, while easily satisfying the delocali
tion conditionAV,v<V21.

In this delocalized regime, full information about wav
function statistical behavior is contained in the distributi
of bond intensitiesuaj

(k)u2 and their correlations~note that we
may freely drop the vertex indexi as it is immaterial which
of the two endpoints we take to be the beginning of bondj ).
It is convenient to introduce a simple one-number measur
wave function ergodicity, the inverse participation rat
~IPR!,

I5^uaj
(k)u4&, ~4!

where the averaging is performed over allB5Vv/2 bondsj
and over a disorder ensemble, at a fixed value ofk. Of
course, averaging over nearby values ofk may also be done
It is often useful to introduce a local version of the IPR,Ij ,
where the bondj is fixed; thenI5^Ij&, averaging over all
bonds. The IPR is the first nontrivial moment of the intens
distributionP(uaj

(k)u2) ~we recall that the mean intensity ha
been normalized to unity!, and can range from 1 in the max
mally ergodic case where all intensities are equal up t
maximum value ofB in the case of perfect wave functio
localization on individual bonds. Random matrix theory
the random vector hypothesis would predict Gaussian r
dom fluctuations in the complex coefficientsaj

(k), thus I
52. Any enhancement of the IPR above this baseline va
indicates a deviation from ergodicity in the local wave fun
tion behavior.

The key theoretical idea discussed and applied in sev
recent works@14# is that wave function intensities in a com
plex system can often be conveniently separated into a p
uct of short-time and long-time parts,

uaj
(k)u25r j„E~k!…3r jk . ~5!

Herer j (E) is a smooth local density of states~known alter-
natively as the strength function! on the bondj at energyE,
obtained as the Fourier transform of the short-time part
the autocorrelation function
5-2
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EIGENSTATE STRUCTURE IN GRAPHS AND . . . PHYSICAL REVIEW E64 036225
Aj
short~ t !5^ j ue2 iHte2t/2Tcutoffu j &, ~6!

while r jk is obtained~formally! by Fourier transforming the
long-time behavior, at timest;Tcutoff and larger. The decom
position is useful because in many situations the short-t
return amplitudeAj

short(t) has a known approximate analyt
cal expression, which can be transformed to obtainr j (E).
On the other hand, the long-time return amplitude in a c
otic or disordered system is given by a convolution of t
short-time behavior with a sum of exponentially many co
tributions, and thusr jk may be regarded as a random variab

^r jk&51,

^r jkr j 8k8&511~F21!d j j 8dkk8 , ~7!

where the statistical average is performed over an appro
ate ensemble.~If r jk is the square of a complex Gaussi
random variable, thenF52.! Because the smooth local spe
tral densityr j (E) and the fluctuationsr jk are associated with
distinct time scales~before and after the mixing time, respe
tively, in a chaotic system!, the two quantities are regarded
statistically independent. Thus, for example, the local I
can be written as

Ij5^r j
2&^r jk

2 &5^r j
2&F, ~8!

where^r j
2&, the second moment of the smooth local dens

function, is proportional to the sum of short-time retu
probabilities uAj

short(t)u2. This formalism has successfull
been used to quantitatively study scars of unstable peri
orbits and related phenomena in billiards, in smooth poten
wells, and in many-body interacting systems.

To apply these ideas to the ring graphs, we focus on
~arbitrary! bond j connecting vertices 1, 2. An initial wav
packet launched in this bond moving from 1 towards 2 w
have a probability

Ptrans5v22u11e22i tan21(l2 /vk)u2 ~9!

of being transmitted into one of the otherv21 bonds meet-
ing at vertex 2; the remaining part of the wave packet th
gets reflected back into the original bond@13#. To begin with,
we setl50 at all vertices for simplicity, and find that th
reflected probability is Prefl512(v21)Ptrans5124(v
21)/v2. The process is repeated at vertex 1, and the rem
ing probabilityPrefl

2 travels again the path taken by the orig
nal wave packet, leading to a nontrivial contribution to t
return probability. We may iterate this process until alm
all of the initial probability to be in the bondj has decayed
@after O(1/v) bounces forv@1#, and find that the sum o
return probabilities behaves as

E dtuA~ t !u2; (
t52`

`

~Prefl
2 ! utu5

11Prefl
2

12Prefl
2

~10!

~note that we always sum return probabilities over both po
tive and negative times!. To leading order inv, we therefore
obtain ^r j

2&5v/42O(1) for the short-time factor. Taking
03622
e

-

-

ri-

y

ic
al

e

l

n

n-

t

i-

into account intermediate-time recurrences~where the wave
is transmitted at either vertex into an adjoining bond and
subsequently transmitted back into the bondj ) cancels the
O(1) term, leading tô r j

2&5v/41O(v21), and thus

I5Ij5
v
4 S 12

b

VDF1O~v21!. ~11!

We note that in Eq.~11! we have included not onlyO(v21)
effects but also the leading finite-volume correction to t
semiclassical answer,b being an undetermined dimension
less constant. Sincev2@V must hold in order to avoid strong
localization, the finite-volume effect is in fact parametrica
larger than the finite-v correction, and we therefore omit th
latter term in the following. We note also that due to t
one-dimensional structure of graphs, Planck’s constant
always be scaled out of the problem; therefore the large
ume limit plays here the role that the\→0 limit plays in
traditional quantum chaotic systems, and finite-volume c
rections take the place of leading semiclassicalO(\) correc-
tions. These finite-volume corrections are also complet
analogous toO(1/N) effects in random matrix theory forN
3N matrices.

The long-time factorF can be obtained directly by mea
suring the mean square value ofuaj

(k)u2/r j (E(k)), i.e., of the
bond intensity normalized by the analytically comput
short-time spectral envelope. For a wide range of values
the system sizeV and the valencyv, the result 4<F<5 is
obtained, supporting the conjecture of independence
short-time and long-time fluctuations in the spectrum~we
note F.2 means that the long-time fluctuations are sup
Gaussian!. Numerical data can then be used to fit the coe
cient b of the subleading semiclassical correction; the fit
quite good as can be seen in Fig. 1. As expected, the IP
primarily a function of valencyv, with volume dependence
being a higher-order effect as long as the delocalization c
dition v2.V is satisfied. The wave function statistics clear
deviate strongly from random matrix expectations asv be-
comes large. This is despite the fact that the level spac

FIG. 1. Observed IPR vs that predicted by the short-time the
Eq. ~11!, for ring graphs with parameter values 7<v<15 and 15
<V<33. Data points represented by1 signs forv57, crosses for
v59, stars forv511, empty squares forv513, and full squares for
v515.
5-3
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L. KAPLAN PHYSICAL REVIEW E 64 036225
statistics of this system are well predicted by random ma
theory, indicating an absence of strong localization.

In a one-dimensional system it is of course impossible
take the semiclassical~large volume! limit for fixed v while
staying in the delocalized regime. It is therefore of interes
consider higher-dimensional systems, such as
d-dimensional cubic lattice, withv52d. In the absence o
vertex potentials (l50) the above analysis still applies
What happens when we introduce disorder into the sys
via the potentialsl i in addition to the disorder alread
present in the bond lengths? Let thel i be independent and
distributed for largel i in accordance with a power law
P(l i);l i

2a , for l0,l i,` ~with a.1). We now claim
that the tail of the IPR distribution will be strongly modifie
by the rare events where a strong potentiall is present on
both sides of a given bondj with endpoints 1 and 2. Indeed
we easily see that Eq.~9! for transmission probability re
duces toPtrans;l22 for strongl. Clearly the weaker of the
two potentialsl1 andl2 will dominate the escape rate. Th
short-time enhancement factor for the local IPR is prop
tional to the inverse of the escape rate, i.e.,Ij;min(l1

2,l2
2),

and thus we have the prediction

P~Ij !;l0
2(a21)I j

2a ~12!

for 1!Ij!V, modifying the exponential fall off predicted
by random matrix theory. Similarly, the tail of the intensi
distribution becomes

P~ uau2!;l0
2(a21)~ uau2!2a21 ~13!

for 1!uau2!V, in contrast with the exponential Porte
Thomas prediction valid for a system satisfying random m
trix statistics.

The result of Eq.~13! is confirmed in Fig. 2, where we
have used an ensemble of 373 lattices with one out of every

FIG. 2. The tail of the wave function intensity distribution
plotted for a three-dimensional lattice with random potentialsl ~see
text!. From top to bottom, the three solid data curves are for ex
nenta51.2, 1.5, and 1.8. The corresponding theoretical power la
from Eq. ~13! are plotted as dashed lines, with the random ma
theory prediction appearing as a dotted curve for comparison.
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D511 sites randomly chosen to contain a scatterer~the par-
ticle executes free motion while traveling between the sc
terer sites, so that the classical motion is diffusive with d
fusion constant growing withD). The total number of
scatterers is thenV54604, and we indeed see that the da
curves tend quickly to zero foruau2>V. We have checked
that with increasing number of scatterersV at fixed a, the
intensity distribution curves keep following a given pow
law behavior for larger and larger intensity, before eventua
dropping off to zero. Similarly, we have checked that varyi
D by a factor of 2 does not significantly affect the intens
distribution for fixedV, as would have been expected for
diffusion-dominated logarithmic-normal tail, logP;
2D log2(uau2)/logV @17,18#. We see instead that the tail o
the intensity distribution is dominated entirely by the sho
time system behavior.

Finally, we return to the volume-averaged IPRI, the sim-
plest overall measure of the degree of wave function loc
ization. From Eq.~12!, we easily obtain in the large-volum
limit

I5Cal0
2(a21)V22a ~14!

for 1,a,2. As we can see in Table I, this result compar
favorably to the numerically computed value over a range
volumesV and for different mean scatterer spacingsD and
minimum potentialsl0. None of the IPR’s are close to th
random matrix predictionI52.

In conclusion, we have seen that various aspects of w
function structure in chaotic and disordered quantum gra
are adequately described using the analytically known sh
time behavior of the system, specifically the return amplitu
at short times and its Fourier transform. On the other ha
random matrix theory completely fails to describe the wa
function structure, even though its predictions are good
the spectral statistics. This failure can be understood as
sulting from the omnipresence of short periodic orbits
graphs, in contrast with the situation prevailing in most oth
chaotic systems.

Several very valuable discussions with T. Kottos a
gratefully acknowledged. This work was supported by t
DOE under Grant No. DE-FG03-00-ER41132.
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TABLE I. Numerically obtained inverse participation ratioI for
a disordered three-dimensional lattice with exponenta51.5, com-
pared with the prediction of Eq.~14! for various numbers of scat
terersV, mean scatterer spacingsD, and minimum potential values
l0. The constant used isCa53.0.

V D l0 Ipredicted Iactual

549 4 0.3 21 23
549 4 1.0 70 72
2197 8 1.0 141 137
2315 4 1.0 144 131
4604 11 1.0 204 210
5-4
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