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Eigenstate structure in graphs and disordered lattices
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We study wave function structure for quantum graphs in the chaotic and disordered regime, using measures
such as the wave function intensity distribution and the inverse participation ratio. The result is much less
ergodicity than expected from random matrix theory, even though the spectral statistics are in agreement with
random matrix predictions. Instead, analytical calculations based on short-time semiclassical behavior correctly
describe the eigenstate structure.
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Quantum graphs, known also as network models, havaeamic and transport properties of mesoscopic netwidr@f
been used successfully for many years as simple dynamicahd chaotic scattering and resonance behd\iti Parallel-
systems in which to study complex wave behavior. For aping this progress of the past several years has been rigorous
propriate parameter values, graphs can be made to displayork on the mathematical structure of graphs, especially that
generic chaotic, disordered, or integrable motion, and at thef Carlson, who has studied differential operators on graphs
same time the quantum mechanics of these systems has tABd graph spectral theoffl2]. A discussion of the earlier
simplifying advantage of being semiclassically exact. Origi-history of quantum graphs can be found in the paper of Kot-
nally, graphs were developed as simple models for electronifoS and Smilansky13], which also provides an extensive
motion between the atoms of an organic molecule; later if€Vi€W Of the model.

was realized that very similar methods were also applicable Thom_Jgh substannal work now exists on the spectral anc_i
to the study of crystalline materials. Seminal work in this Scattering properties of quantum graphs, and also on their

field was performed by Pauling as early as 193§ with Ir?rget;scale ch(j:ahz?nor: bt(;hagjnc;r,.ls%rpnsmg;y I|t:!e atttentlfn
important later contributions by Coulsd2], by Montroll, ??h' een pgl sot. arto te € alte V\Ilavtﬁ. unction s rl:)C ure
who was able to interpolate between free-electron motiolf IS Paradigmatic quantum system. in this paper we begin

and tight-binding modelf3], and by Richardson and Balazs to address questions re_Iating to the statistics OT wave fu_nc-
who found a class of net;/vorks for which constant eneré ions on graphs and their relation to the underlying classical

surfaces were determined entirely by the network topolog tructures in the system. In the Process, we examine the re-
[4]. ationship between short-time and long-time effects on sta-

The picture developed by these authors is that electrongOnary behavior, making connections to recent work on

travel from atom to atom along strictly one—dimensionalOther simple quantum chaotic problems, including quantum

bonds or pathwaygpossibly under the influence of a one- maps, Sinai billiards, Bunimovich stadia, tunneling in double
dimensional potential and scatter into other bonds when- wells, conductance through chaotic quantum dots, and many-

- body systems with random two-body interacti¢ad].
ever they reach an atomic vertex. Therefore, a key approxi Following the discussion of Ref13], a quantum graph

mation involved in all the graph models is that the potential . . A
confining traveling particles to the bonds is strong enough tgonsists ol vertices connected by bonds, each of which is

make excitation of higher-energy transverse modes neg"modeled as a one?dimensional wire of length) (] .
=1,...B) along which the wave propagates freely with

gible; similarly the vertices are assumed to behave in a per- : . .
fectly zero-dimensional manner at relevant energy scale<€r® potential. At each ofvthe= 1,...V vertices,v;=2
Apart from this important constraint, one has substantiaPonds will meet(note that¥;_,v;=2B), and one must im-
freedom in choosing the graph topology, the potentiared ~ P0S€ wave function continuity
possibly also magnetic fiellsgoverning one-dimensional
motion along the bonds, and also to some degree the scatter- Vi,1(0)="¥i.(0) (1)
ing matrix at eaqh vertex, as we will see below. and a current conservation condition

In the 1980s important progress was made among others

by Alexander[5], who used networks to study the behavior d
of disordered superconductors. Most recently, graph models > (—qfi j)(o)zy\i\]fi i(0). (2
have been used by a number of authors to study issues as To\dx '

diverse as Anderson localization within the context of peri- ] ) o
odic orbit theory[6], the spatial distribution and transport Note that in both of the equations above we are fixing a
properties of persistent curren], Aharonov-Bohm con-  Vertexi, Whllej_ labels the bonds_, as it does throug_hout the
ductance modulations in GaAs/@d;_,As networks[8],  Paper.¥;;(x) is the wave function in the bong with x
spectral statistics and the trace formula in chaotic systems 0 corresponding to the vertéxandx=L; corresponding to

[9], spectral determinants, with applications to thermody-the other vertex. In the continuity condition of Ed), j and
j’ represent any two bonds meeting at vertexvhile the

sum in the current conservation condition of E2). is over
*Email address: Ikaplan@phys.washington.edu all v; bonds labeled by that meet at this vertex. Because of

1063-651X/2001/648)/0362255)/$20.00 64 036225-1 ©2001 The American Physical Society



L. KAPLAN PHYSICAL REVIEW E 64 036225

continuity, j on the right-hand side of Eq2) can represent or more wave functions at a given valuelofias no discern-
any oneof the bonds meeting at the vertexhe indexj is of  ible effect on the resulting wave function statistics.
course not summed over. Comparing the Heisenberg timé divided by the mean

\; in the current conservation condition is a fréend level spacing, at which individual levels are resolyvedth
possibly energy-dependgnparameter associated with the the time required classically to diffuse over the entire system,
height of the effective potential at vertexand allows one to or alternatively making an analogy with banded random-
interpolate between Neumanmn\;&0) and Dirichlet {; matrix behavior, we see that the condition for avoiding lo-
—) boundary conditions. Formally, using self-adjoint ex- calization in our system is?>V. We note that the localiza-
tension theory, where one starts out by defining a Hamiltion condition isk andz independent and depends only on
tonian operator on the domain of wave functions that livethe classical graph geometry. Increasing the valenégr a
away from the vertices and then classifies all consistent wayfixed system size/, one easily observes a transition from
of extending this operator to the full domain while keeping itlocalized to delocalized behavior, which can be detected ei-
self-adjoint, one can show that the form of Eg) with one  ther by looking at the change in level spacing statigfiicam
free parametek is the only one consistent with both wave Poisson to GOEor at the change in the wave function in-
function continuity and conservation of fluxl5,16. Of  tensity correlationfrom strongly negative to near zerbe-
course, we also easily see that E(9.and(2) are invariant tween distant points on the graph. Either method confirms
under all local permutation of the bonds. In this way, ourthe expected scaling behavior for the transition. One can
vertex scatterers are analogous to pointlike s-wave scatteretiserefore take the large-volume limit—c, where statistical
in empty space, whose strength can similarly be described byehavior is expected, while easily satisfying the delocaliza-
a single effective energy-dependent parameter. tion condition\V<v<V-1.

Because of time-reversal invariance, the wave function in In this delocalized regime, full information about wave
each bond can be written ak; j(x)=a{)e"*+a*e ™ function statistical behavior is contained in the distribution
for an eigenstate at enerdf/2m. Thus, the distribution of of bond intensitiega{*'|? and their correlationgnote that we
wave function intensities in the system can be completelynay freely drop the vertex indexas it is immaterial which

characterized in the limikL—o by the distribution of the of the two endpoints we take to be the beginning of bphd
k)

quantities| ai('J |2. In this limit, the simple normalization con- It is convenient to introduce a simple one-number measure of
dition wave function ergodicity, the inverse participation ratio
(IPR),
K =(|ak4
iZj Lj|a§,j>|2=; L, (3) Z=([aj"I*), (4)

where the averaging is performed over B¥ Vv /2 bonds;

and over a disorder ensemble, at a fixed valuekofOf
course, averaging over nearby valuekafiay also be done.

It is often useful to introduce a local version of the IPR,
where the bong is fixed; thenZ=(Z;), averaging over all
bonds. The IPR is the first nontrivial moment of the intensity
distribution(|a{'|?) (we recall that the mean intensity has
been normalized to unifyand can range from 1 in the maxi-
mally ergodic case where all intensities are equal up to a
maximum value ofB in the case of perfect wave function

stead produce eigenstates localized on individual b)ondslﬁcal'zagon on |?d|v;]dualtr?onds. Rallgdomd_mtatGHX the_ory or
while nonintegrability is ensured through randomness in thdne random vector hypothesis would predict Gaussian ran-

bond lengthd ;. In our calculation we take the bond lengths dom fluctuations in the complex coefﬁuenﬁ ' thl,‘SI
to be uniformly distributed in an intervdll— sL,1+ &L 1: =2. Any enhancement of the IPR above this baseline value

indicates a deviation from ergodicity in the local wave func-

ensures that the mean bond inten:éitaéﬁ)lz} is set to unity.
We begin our analysis with a simple one-dimensional
“ring graph” [13] where theV vertices are arranged in a
circle and each verteixis connected by bonds to neighboring
verticesi—v/2...i—1ji+1...i+v/2. v, the number of
bonds meeting at every vertex, is known as the valéheye
taken to be constant over the entire grapBetting all the
vertex potentials,;=0 leads to the maximum possible delo-
calization in the graplithe opposite limitA;—c would in-

because the scattering matrices depend onlilgmod 27, _ .
all choices of 5L are equivalent as long a8 >k~1. The tion behavior. o _ o
eigenstates of the system may be obtained by examining a The key theorgncal idea d|scus§ed _and a_p.plle.d in several
VXV secular matrish(k) [13]; k is an eigenvalue whenever recent workg14] is that wave function intensities in a com-
deth(k) =0, and the associated null vector corresponds to aRleX system can often be cqnvenlently separated into a prod-
eigenvector of the graph. In fact, small but nonzero singulaluct of short-time and long-time parts,

valuese of h(k) can easily be seen to correspond to eigen- 912

vectors of the same system with slightly perturbed potentials |aj %= pj(E(K)) X1 . )
Ni—\i—Kke, so sufficiently small singular values| e

|<k™I\) can also be used to produce eigenstates. Thislere p;(E) is a smooth local density of statéenown alter-
method allows the collection of several independent wavenatively as the strength functipon the bond at energyk,
functions at a given value df for any given realization of obtained as the Fourier transform of the short-time part of
the disorder ensemble. One easily checks that collecting ortbe autocorrelation function
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A?hortt) — <J |e“Hte‘t’2Tcut0ff|j >, (6) 25 |
while rj, is obtained(formally) by Fourier transforming the 20 |
long-time behavior, at timets- T, and larger. The decom- x o .

- . . . : . a Short-time
position is useful because in many situations the short-time Z ¢5 | prediction
return amplitudeAjShO"(t) has a known approximate analyti- “5’
cal expression, which can be transformed to ob{giE). § 10t
On the other hand, the long-time return amplitude in a cha- = .
otic or.disordereq system is given by a convolution of the 5| RMT prediction
short-time behavior with a sum of exponentially many con- \
tributions, and thus;, may be regarded as a random variable o ‘ ‘ ‘ S

8 10 12 14 16 18 20 22 24 26
(=1, Short-time predicted IPR
(rirjre)=1+(F—=1)8jj S » (7) FIG. 1. Observed IPR vs that predicted by the short-time theory,

o ) Eq. (12), for ring graphs with parameter values<s?v <15 and 15
where the statistical average is performed over an approprisy<33. Data points represented by signs foro =7, crosses for

ate ensemple(lf rik is the square of a complex Gaussian, =9, stars fow =11, empty squares far= 13, and full squares for
random variable, theR=2.) Because the smooth local spec- , =15.

tral densityp;(E) and the fluctuations;, are associated with

distinct time scalegbefore and after the mixing time, respec- into account intermediate-time recurrencaghere the wave
tively, in a chaotic systeithe two quantities are regarded as is transmitted at either vertex into an adjoining bond and is
statistically independent. Thus, for example, the local IPRsubsequently transmitted back into the bgidcancels the

can be written as O(1) term, leading tC(pj2>=v/4+ O(v™Y), and thus
Zi=(p{Xrj)=(p})F. ®) v( b
I=Tji=7|1-§ F+0O(v™Y). (11)
where(pjz>, the second moment of the smooth local density

function, is proportional to the sum of short-time return
probabilities|Afh°rkt)|2. This formalism has successfully
been used to quantitatively study scars of unstable periodi

orbits and related phenomena in billiards, in smooth potential,sg constant. Sinag?>V must hold in order to avoid strong
wells, andI mhmany-body mtc;rac_tlng syStﬁmS- . localization, the finite-volume effect is in fact parametrically
To apply these ideas to the ring graphs, we focus on OnFarger than the finiter correction, and we therefore omit the

(arbitrary bondj connecting vertices 1, 2. An initial wave |ayter term in the following. We note also that due to the
packet launched in this bond moving from 1 towards 2 will 5ne_gimensional structure of graphs, Planck’s constant can
have a probability always be scaled out of the problem; therefore the large vol-
ume limit plays here the role that the—0 limit plays in
traditional quantum chaotic systems, and finite-volume cor-
rections take the place of leading semiclassiaéh) correc-
tions. These finite-volume corrections are also completely
r}analogous tdD(1/N) effects in random matrix theory fav

X N matrices.

We note that in Eq(11) we have included not onl®(v 1)
effects but also the leading finite-volume correction to the
emiclassical answeh being an undetermined dimension-

F)’[rans=1)72|:|.+672i tan’l()\z/uk)|2 (9)

of being transmitted into one of the other 1 bonds meet-
ing at vertex 2; the remaining part of the wave packet the
gets reflected back into the original boi8]. To begin with,
we setA=0 at all vertices for simplicity, and find that the ; . :
i . ! The long-time factof= can be obtained directly by mea-
ref'eftid hprobablllty. IS Pre“:dl_(v_l)P“a“S:dlaél(v  suring the mean square value|af|?/p;(E(k)), i.e., of the
—1)/v%. The process is repeated at vertex 1, and t € remai g intensity normalized by the analytically computed

. aye 2 . .
|r?g| |3Jo\t/)a1b|lltykPr€fI |tra\é|‘iarl1$ ?ga'n;hﬁtﬁ\i‘ithl takr?t?it?ytithrf ton?r: short-time spectral envelope. For a wide range of values for
al wave packet, feading fo a no alco ution 10 they, system siz& and the valency, the result &<F=<5 is

return probability. We may iterate this process until almost : : ; ;
all of the initial probability to be in the bonjihas decayed Coraned: supporting the conjecture of independence  of

i short-time and long-time fluctuations in the spectriwe
EZIL‘?L%%{Q[)Rgilégcgghz)\?éi;1’ and find that the sum of note F>2 means that the long-time fluctuations are super-

Gaussiap Numerical data can then be used to fit the coeffi-

cient b of the subleading semiclassical correction; the fit is
(10) quite good as can be seen in Fig. 1. As expected, the IPR is
1- P2, primarily a function of valency, with volume dependence

being a higher-order effect as long as the delocalization con-

(note that we always sum return probabilities over both posidition v?>V is satisfied. The wave function statistics clearly
tive and negative timgsTo leading order iv, we therefore  deviate strongly from random matrix expectationsvabe-
obtain <p1-2>=v/4— O(1) for the short-time factor. Taking comes large. This is despite the fact that the level spacing

©

| a3 pa-
t=—o0

1+Ply
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1072 ‘ . TABLE I. Numerically obtained inverse participation rafidor
3 B a disordered three-dimensional lattice with exponestl.5, com-
c 10 S 3 pared with the prediction of Eq14) for various numbers of scat-
-% 104 ¢ terersV, mean scatterer spacings and minimum potential values
2 5 b N\o. The constant used 8,=3.0.
5 10 " ¢
v
5 -6
; 10 \ D A 0 Ipredicted Iactual
= T
g 10 . 549 4 0.3 21 23
8 ; :
10 . _RMT .
ag_ . — Brediction 549 4 1.0 70 72
10°L 2197 8 1.0 141 137
1070 ‘ , 2315 4 1.0 144 131
10 100 1000 10000 4604 11 1.0 204 210
Intensity

FIG. 2. The tail of the wave function intensity distribution is 5 _ 11 sites randomly chosen to contain a scattéfes par-
plotted for a three-dimensional lattice with random potentia{see ticle executes free motion while traveling between the scat-

texy. From top to bottom, the three solid data curves are for EXPO%arer sites, so that the classical motion is diffusive with dif-

nenta=1.2, 1.5, and 1.8. The corresponding theoretical power IaW? . tant . ithD) The total b f

from Eq. (13) are plotted as dashed lines, with the random matrix usion constan g_rOWIng withD). he lotal humber o

theory prediction appearing as a dotted curve for comparison. scatterers Is th‘?"’—4604’ and W% indeed see that the data
curves tend quickly to zero fdma|°=V. We have checked

statistics of this system are well predicted by random matrixhat with increasing number of scatterérsat fixed a, the
theory, indicating an absence of strong localization. intensity d.IStI’Ibutlon curves keep. foIIovymg a given power

In a one-dimensional system it is of course impossible tdaw bghawor for Iarger_ ar_1d larger intensity, before eventuglly
take the semiclassicglarge volume limit for fixed v while ~ dropping off to zero. Similarly, we have checked that varying
staying in the delocalized regime. It is therefore of interest td°. Y @ factor of 2 does not significantly affect the intensity
consider  higher-dimensional ~ systems, such as Sistribution for fixedV, as would have been expected for a
d-dimensional cubic lattice, witlh=2d. In the absence of d|ﬁu5|02-d%m|nated logarithmic-normal ~ tail, ~19g~
vertex potentials X=0) the above analysis still applies. — D l0g“(al)/logV [17,18. We see instead that the tail of
What happens when we introduce disorder into the systerﬂ"e intensity dlstrlb_utlon is dominated entirely by the short-
via the potentialsk; in addition to the disorder already tMe System behavior.

present in the bond lengths? Let thebe independent and  Finally, we return to the volume-averaged IERthe sim-
distributed for large\; in accordance with a power law plest overall measure of the degree of wave function local-

P(N)~\ 9, for N\g<\; <o (with a>1). We now claim ization. From Eq(12), we easily obtain in the large-volume
I 1 1 i .

that the tail of the IPR distribution will be strongly modified limit

by the rare events where a strong potentiak present on

both sides of a given borjdwith endpoints 1 and 2. Indeed, 2(a— 102

we easily see that Eq9) for transmission probability re- I=C\g " Ve (14)
duces toPy,,s~ N ~ 2 for strong\. Clearly the weaker of the

two potentialsh, andA, will dominate the escape rate. The for 1<a<2. As we can see in Table I, this result compares

S:hort-tlme ephancement factor for the Igcal IP_R '25 erOpor'favorably to the numerically computed value over a range of
tional to the inverse of the escape rate, i min(A7,\3),

2 volumesV and for different mean scatterer spacirigsand

and thus we have the prediction minimum potentials\,. None of the IPR’s are close to the
random matrix predictiof=2.
P(I,-)A*)\S(“*l)ff“ (12 In conclusion, we have seen that various aspects of wave
function structure in chaotic and disordered quantum graphs
are adequately described using the analytically known short-
time behavior of the system, specifically the return amplitude
at short times and its Fourier transform. On the other hand,
random matrix theory completely fails to describe the wave
function structure, even though its predictions are good for
P(lal®)~ 3 Y(ja)?) ot (13)  the spectral statistics. This failure can be understood as re-

sulting from the omnipresence of short periodic orbits in

2 . . ) graphs, in contrast with the situation prevailing in most other
for 1<|aJ<V, in contrast with the exponential Porter- . aotic systems.

Thomas prediction valid for a system satisfying random ma-

trix statistics. Several very valuable discussions with T. Kottos are
The result of Eq(13) is confirmed in Fig. 2, where we gratefully acknowledged. This work was supported by the

have used an ensemble of*3attices with one out of every DOE under Grant No. DE-FG03-00-ER41132.

for 1<Z;<V, modifying the exponential fall off predicted
by random matrix theory. Similarly, the tail of the intensity
distribution becomes
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